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Abstract

In this paper, we continue to develop and study the conservative level set method for incompressible two phase flow
with surface tension introduced in [J. Comput. Phys. 210 (2005) 225–246]. We formulate a modification of the reinitial-
ization and present a theoretical study of what kind of conservation we can expect of the method. A finite element dis-
cretization is presented as well as an adaptive mesh control procedure. Numerical experiments relevant for problems in
petroleum engineering and material science are presented. For these problems the surface tension is strong and conser-
vation of mass is important. Problems in both two and three dimensions with uniform as well as non-uniform grids are
studied. From these calculations convergence and conservation is studied. Good conservation and convergence are
observed.
� 2007 Published by Elsevier Inc.
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1. Introduction

To study the extraction of petroleum and the construction of hard metals through liquid phase sintering it
is necessary to be able to model incompressible two phase flow with surface tension accurately. If no phase
change occurs the mass of each of the two fluids should be conserved. Since the flow is incompressible this
implies that the volume occupied by any of the fluids should be preserved as well. It is therefore of importance
that the method used to simulate the flow conserves these volumes.

The most commonly used methods to model incompressible two phase flow with surface tension are the
volume of fluid method (VOF) [1,2], the level set method [3,4], the front tracking method [5] and phase field
methods [6]. Here we focus on the volume of fluid method and the level set method. There are advantages and
disadvantages of both of these methods.

The VOF method has the main advantage of conserving the volumes of the two fluids exactly. The interface
is however represented by a discontinuity of a globally defined function. Because of the discontinuity it is hard
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both to move the interface as well as calculating surface tension, which depends on the mean curvature of the
interface, accurately. Specially designed methods have to be used to advect the interface. Standard finite ele-
ment discretizations will for example not work.

In level set methods the interface is defined by the zero contour of a signed distance function, the level set
function. Since this function is smooth across the interface it is easier to advect the interface as well as to cal-
culate the curvature with high order of accuracy. Both finite element and finite difference approximations of
the level set method have been used successfully to advect the interface. There is however no built in volume
conservation. A small amount of mass is thus lost or gained in each time step. As time evolves these errors will
typically accumulate.

In [7] we constructed a modified level set method with built in conservation. Here, the level set function U
was a regularized characteristic function. A reinitialization procedure, formulated as a conservation law, was
used to preserve the smooth profile of the regularized characteristic function. Conservative methods could
then be used for both advection and reinitialization. Because of this

R
X U dX was conserved exactly. Since

U was a regularized characteristic function, this implied a good conservation of the volume bounded by the
sharp interface U ¼ 0:5. The numerical calculations showed very good conservation of the volume bounded
by the sharp interface. For the test cases with given velocity fields good convergence was obtained. A rising
air bubble in water was also studied. Mass conservation was very good, but the convergence as the grid
was refined was slow.

We believe that a possible reason for the slow convergence for the rising bubble was the formulation of the
reinitialization. In the reinitialization there was diffusion. The diffusion in the direction normal to the interface
was balanced by a compressive term, such that the resulting motion of the interface could be expected to be
small. The diffusion tangential to the interface was however not balanced by any compression. This tangential
diffusion might thus have moved the interface slightly. In this paper, we propose the diffusion in the reinitial-
ization to be only in the direction normal to the interface. We obtain good convergence with an estimated
order of accuracy of two for two phase flow calculations with strong surface tension.

The convergence to steady state in the reinitialization step will be studied. We will see that we can expect
this convergence to be exponential in time on a fast time scale. This implies that we can expect the computa-
tional expenses due to the reinitialization to be small. We will also perform a theoretical analysis on what kind
of conservation we can expect of the method. The numerical tests agree well with our theoretical results.

We also propose a finite element discretization of the method. An adaptive procedure is also presented,
such that the grid can be refined close to the interface. Using an existing finite element package this could eas-
ily be implemented for both two and three dimensional problems. Results for a few different problems are pre-
sented to investigate the conservation and convergence of the method.

2. The conservative level set method

A conservative level set method for motion of interfaces in a given divergence free velocity field was intro-
duced in [7]. We summarize the basic idea of the method here. Assume an arbitrary domain X divided into
subdomains X1 and X2 such that X2 ¼ X n X1. Let C be the internal boundary between X1 and X2. The idea
of the conservative level set method is to define the boundary C implicitly by a function U being a regularized
characteristic function. This means that U goes rapidly from zero to one across the interface C and that U � 1
for x 2 X1 and U � 0; x 2 X2 away from the boundary C. C can be sharply defined as the 0.5 contour of U.
The normal, n̂, and curvature, j, of the interface can easily be calculated from n̂ ¼ rU=jrUj and j ¼ �r � n̂.
As the interface moves we want to keep the shape of the profile constant. Small perturbations in the shape
should be damped, since in numerical computations there will always be perturbations. How the shape is pre-
served will be motivated by a study of the one dimensional case in the following section.

2.1. Stable traveling wave solutions in one dimension

Consider advection in one dimension for some constant velocity v:
Ut þ vUx ¼ 0: ð1Þ
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Assume that initially U is the regularized characteristic function given by
U0ðxÞ ¼
1

1þ e�x=e
: ð2Þ
Next assume an initial perturbation dðxÞ, i.e.
Uðx; 0Þ ¼ U0ðxÞ þ dðxÞ:

The solution to (1) is then
Uðx; tÞ ¼ U0ðx� vtÞ þ dðx� vtÞ:
Perturbations will thus not be damped but simply advected with v. For numerical calculations, where new per-
turbations are constantly introduced, the shape will become more and more distorted as time evolves. All sta-
ble numerical methods also have some artificial diffusion that will smear the profile. We thus have to stabilize
(1) such that Uðx; tÞ ! U0ðx� vtÞ as t!1.

To achieve this, we study the partial differential equation (PDE)
Ut þ vUx ¼
1

l
ðeUxx � ðUð1� UÞÞxÞ: ð3Þ
If Uðx; 0Þ ¼ U0, where U0 is given by (2), then Uðx; tÞ ¼ U0ðx� vtÞ, i.e. the analytical solution is identical to the
solution of (1). What happens now if we perturb the initial data? Introducing n ¼ x� vt; s ¼ t=l, and
Wðn; sÞ ¼ 1� 2Uðn; sÞ, in (3) yields the well known Burgers equation for W:
1

2
ðW2Þn þWs ¼ eWnn:
Steady state solutions to this equations are W0ðnþ cÞ with W0ðnÞ ¼ 1� 2U0ðnÞ for any shift c. We can thus in
general only hope for convergence in time to a shifted profile. The evolution of perturbations to the initial data
W0ðnÞ ¼ 1� 2U0ðnÞ this equation was studied in [8]. By assuming the perturbations dðn; sÞ to be small, the evo-
lution of dðn; sÞ can be approximated by a linearized problem
d ¼Ld:
It was shown in [8] that the spectrum of the operator L consists of an isolated eigenvalue k ¼ 0 plus a con-
tinuous spectrum �1 < k < �c=e for some c > 0.

It can be shown that the eigenvalue 0 corresponds to a shift in W. This means that we can expect small per-
turbations to W0ðnÞ to converge to a shifted W, i.e. Wðn; sÞ ! W0ðnþ cÞ, as s!1. The convergence to the
shifted steady state can be expected to be exponential in time on the time scale s � e. The stability of viscous
shocks was also studied in [9]. There it was shown that if the perturbation is of zero mass, i.e. ifR1
�1 dðn; 0Þ dn ¼ 0, then there will be no shift, i.e. c ¼ 0. Since v is constant, (1) is also a conservation law.

When using conservative numerical schemes, the truncation errors will be of zero mass. We thus expect these
errors to decrease rapidly in time without shifting the profile.

The time scale on which the perturbations decrease will be t � le. We assume the velocity v ¼ Oð1Þ. If
el� 1 this time scale will be much faster than the time scale related to the advection. For a constant velocity
it is reasonable to choose l ¼ 1, since e is assumed to be small.

Remark: We are only interested in divergence free velocity fields. For a velocity field with only one non-zero
component, the divergence free condition implies that the velocity is constant. It does therefore not make sense
to discuss variable velocities in one space dimension.

2.2. Stabilized advection in two and three dimensions

For divergence free velocities~u in several space dimensions we want to stabilize the profile across the inter-
face in the direction normal to the interface C. The stabilized advection can be expressed as
Ut þr � ð~uUÞ ¼ 1

l
r � ð�Uð1� UÞn̂þ eðrU � n̂Þn̂Þ; ð4Þ
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where n̂ ¼ rU=jrUj. In several space dimensions, the divergence free condition on the velocity does not imply
a constant velocity. Then also variations in the velocity will distort the shape of U across the interface. This
implies that it might be necessary to make l, smaller in order to keep the profile of U across the interface.
Typically, the size of l will depend on the gradient of the velocity at the interface. To handle this numerically
we split the advection and the stabilization into a set of two PDEs. First one time step of
Ut þr � ðU~uÞ ¼ 0 ð5Þ

will be solved. Using the resulting U, which we denote by Unþ1

� , as initial condition one time step of
Ut þ
1

l
r � ðUð1� UÞn̂Þ ¼ 1

l
er � ððrU � n̂Þn̂Þ ð6Þ
is solved. Here, n̂ ¼ rUnþ1
� =jrUnþ1

� j. One time step of Eq. (6) can be replaced by taking l timesteps of
Us þr � ðUð1� UÞn̂Þ ¼ er � ððrU � n̂Þn̂Þ; ð7Þ

where s ¼ t=l and the time steps are equal, Dt ¼ Ds. Note that in both (6) and (7) the same n̂ is used, and that
n̂ does not change during the stabilization step. We want to choose l such that the shape of U across the inter-
face is given by the steady state solution of (7). Thus, instead of explicitly determining l, we solve (7) to steady
state. The process of solving (7) to steady state will be referred to as the reinitialization step. In this way we do
not have to determine how small l, should be. Moreover, from the discussion in Section 2.1 we can expect the
time for convergence of (7) to steady state to be of OðeÞ. As will be seen later we will choose the discretization
parameters to Dt � Dx � e. This implies that only a few time steps, Oð1Þ, will be needed to reach the steady
state of (7).

Since both the advective step as well as the reinitilization step are formulated as conservation laws,
R

X U dx
is constant in time in the continuous case. By using conservative numerical methods, this quantity can also be
conserved exactly in the discrete approximation of the PDEs. The conservative properties of the method will
be discussed further in Section 4.
2.2.1. Modification of the reinitialization step

In the original formulation in [7] the reinitialization was given by
Us þr � ðUð1� UÞn̂Þ ¼ er � ðrUÞ: ð8Þ

If n̂ ¼ rU=jr/j, then rUðrU � n̂Þn̂. This implies that the diffusion will result in a flux in the direction of n̂
only. This flux will rapidly become balanced by the compressive flux Uð1� UÞn̂. Hence, we can expect the
motion of the interface during the reinitialization to be small. We will however fix n̂ such that
n̂ðsÞ ¼ rUs¼0=jrUs¼0j during each reinitialization step, n̂ ¼ rU=jrUj will then only hold for s ¼ 0. As s
increases the diffusion might result in a small flux in the direction tangential to the interface. This flux will
not be balanced by any compression. Because of this, the tangential diffusion might move the interface. This
effect will be particularly strong if a large s is needed to reach the steady state of (8). To avoid any tangential
diffusion, we have replaced (8) by (7).

We will use finite elements to discretize the reinitialization step. For these to be stable (see for example [10])
diffusion is needed in the direction of the compression only. Because of this we will not have to add any arti-
ficial diffusion to stabilize the discretization of (7).

2.3. Discretization using finite elements

In order to be able to easily apply our method to problems with complex geometries as well as to simplify
the use of adaptive grids we use a finite element discretization of the PDEs in space. In time finite differences
are used.

For all finite element approximations we need to define finite dimensional function spaces. Throughout this
paper we will denote
V h ¼ ff ðxÞ : f ðxÞ is piecewise linear within X and f ðxÞ ¼ 0 8x 2 K � oXg:
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We will not explicitly define K, but simply assume it to be the part of the boundary where Dirichlet boundary
conditions have been given on the corresponding unknown. Vector valued function spaces with d components
will be denoted by
W h ¼ f~f ðxÞ ¼ ½f1ðxÞ; . . . ; fdðxÞ	T : fiðxÞ is piecewise linear within X and f iðxÞ ¼ 0 8x 2 Ki � oX;

i ¼ 1; . . . ; dg: ð9Þ
We will assume the boundaries to be walls, and impose no flux boundary conditions for U. Thus, no Dirichlet
conditions on U are set, i.e. K ¼ ; for U. The spatial finite element discretization of (5), the advection step, can
now be formulated as: Find U 2 V h such that
Z

X
vUt dx�

Z
X
rv � ðU~uÞ dxþ

Z
oX

v/~u � m̂ dS ¼ 0 8v 2 V h: ð10Þ
Here m̂ is the normal of oX. The boundary term vanishes if the boundaries are walls, since then~u � m̂ ¼ 0. The
spatial discretization of the reinitialization (7) is given by: Find U 2 V h s.t.
Z

X
vUs dxþ

Z
X
rv � ð�~f þ eðrU � n̂Þn̂Þ dxþ

Z
oX

vð~f � eðrU � n̂Þn̂Þ � m̂ dS ¼ 0 8v 2 V h: ð11Þ
Here,~f ¼ Uð1� UÞn̂. By omitting the boundary term from the system the condition that the flux of U through
the boundaries is zero is imposed.

The temporal discretization of the advection equation (10) is discretized using forward Euler. Let Un � ðtnÞ
and denote the constant time step Dt ¼ tnþ1 � tn. An intermediate Unþ1

� is then calculated. Find Unþ1
� 2 V h such

that
 Z
X

v
Unþ1
� � Un

Dt
dx�

Z
X
rv � ðUn~unÞ dx ¼ 0 8v 2 V h: ð12Þ
If we do not perform any reinitialization, then the discretization (12) is unstable. With the reinitialization step
applied, we did not observe any instabilities in our numerical experiments. If necessary, (12) can be stabilized
by adding streamline diffusion.

To calculate the reinitialization step, the normal of the interface, n̂nþ1
� , has to be approximated. This is also

done using finite elements. n̂nþ1
� 2 W h is specified such that
Z

X

~v � rUnþ1
�

jrUnþ1
� j

dx ¼
Z

X

~v � n̂nþ1
� dx 8~v 2 W h: ð13Þ
Note that the same normal vectors are used throughout one reinitialization step. Since the reinitialization
equation is solved to steady state, the order of accuracy of the temporal discretization is not important. How-
ever, a first order explicit discretization gives severe restrictions on the time step for larger e. A first order im-
plicit discretization gives a nonlinear system to solve. We use a second order semi-implicit discretization in
time with good stability properties. We start by letting k ¼ 0 and U0

c ¼ Unþ1
� . Then for k ¼ 0; . . . ;m we deter-

mine Ukþ1
c 2 V h such that
Z
X

v
Ukþ1

c � Uk
c

Ds
dx�

Z
X

Uk
c þ Ukþ1

c

2
� Ukþ1

c Uk
c

� �
rv � n̂nþ1

� � er Uk
c þ Ukþ1

c

2

� �
� n̂nþ1
� ðrv � n̂nþ1

� Þ dx ¼ 0

8v 2 V h: ð14Þ
The iteration stops when
kUmþ1
c � Um

c k
Ds

< d ð15Þ
for some small d. Following the discussion in Section 2.1 we expect only a few time steps to be needed to fulfill
the condition (15). Finally, we set Unþ1 ¼ Umþ1

c .
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2.4. Comments and restrictions on the parameter e

There are several reasons to choose the parameter e as small as possible. First of all, it is still unclear how
the reinitialization step moves the 0.5 contour of U. We have seen in Section 2.1 that the addition of the sta-
bilizing term does not alter the position of the 0.5 contour in the one dimensional case. This holds even for
large e. However, for two and three dimensions, it is still unclear how the 0.5 contour of U will move during
the reinitialization. It will depend on the size of e and in the limit e! 0, the reinitialization will not move the
0.5 contour at all. We intend to investigate the motion of the 0.5 contour of U during reinitialization in
another paper.

As we shall see in Section 4, a smaller e also gives better conservation of the area bounded by the 0.5 con-
tour of U. As we couple the method with the incompressible Navier–Stokes equations, we will also reduce the
smearing of density, viscosity and surface tension by choosing e smaller.

There are however numerical restrictions on how small we can choose e. The calculation of normal and
curvature will be more accurate if the transition in U is smooth. A too small e compared to the gridsize h will
also create over or undershoots in the steady state solution of (14). The corresponding one dimensional prob-
lem is to find /n such that
Z b

a
/nð1� /nÞvx dx ¼ e

Z b

a
/n

xvx dx 8v 2 V h:
Choose v such that vx ¼ 1 if x 2 ½xi; xiþ1	 and zero otherwise. Denoting hi ¼ xiþ1 � xi and /i ¼ /nðxiÞ we get
hi
/i þ /iþ1

2
� /2

i þ /2
iþ1 þ /i/iþ1

3

 !
¼ eð/iþ1 � /iÞ:
If /i � /iþ1 � 0 we get by linearizing around zero that
/iþ1 �
hi=2þ e
e� hi=2

/i:
This implies that if e < hi=2, then /i and /iþ1 will be of opposite sign, i.e. /n will be oscillating. By assuming
/i � /iþ1 � 1 we obtain the same restriction on e. Note that on a non-uniform grid restrictions on e will be
different on different parts of the grid. A small e is typically desired close to / ¼ 0:5 to get a sharp transition.
Far away from the interface we can allow a bigger e. This can be achieved by having an adaptive grid refined
close to the interface. In this way we can allow a smaller e close to the interface without introducing oscilla-
tions. The adaptive procedure will be discussed further in Section 5.

We will let e be proportional to the grid size. This means that we are not solving the same set of equations
on different grids. One must be aware of that as the grid is refined, the profile of U will not become better
resolved, and that we can therefore cannot expect pointwise convergence of U. At least for simple model prob-
lems we do expect convergence in L2 norm, and that the 0.5 contour of U should converge. However, for gen-
eral cases it is unclear what kind of convergence to expect. In our numerical experiments, we do obtain good
convergence of the 0.5 contour of U. These results are presented in Section 6. If problems with convergence
occur, use e ¼ CðDxÞ1�d

; 1 > d > 0 instead of e ¼ CDx. In [7], d ¼ 0:1 was needed to obtain convergence in
one of the numerical tests.

3. The incompressible Navier–Stokes equations

The incompressible Navier–Stokes equations for two phase flow with surface tension are given by
ðq~uÞt þr � ðq~u~uÞ ¼ �rp þ 1

Re
r � ðlðr~uþ ðr~uÞTÞÞ þ q

Fr2
~eg þ

1

We
~F sv; ð16Þ

r �~u ¼ 0; ð17Þ
Ut þr � ðU~uÞ ¼ 0; ð18Þ
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where Re ¼ qref uref lref

lref
, Fr ¼ urefffiffiffiffiffiffiffi

lref g
p and We ¼ qref u2

ref
lref

r , qref ; lref ; lref ; uref are constant reference density, viscosity,

length and velocity, and r is the surface tension. We will use a diffuse interface approach to model the force
due to surface tension, introduced in [11]:
~F sv ¼ jrU ¼ � r � rU
jrUj

� �
rU:
The density and viscosity are constant within each fluid. To smooth the discontinuity across the interface, we
let
q ¼ q1 þ ðq2 � q1ÞU;
l ¼ l1 þ ðl2 � l1ÞU:

ð19Þ
Here, q1; q2 and l1; l2 are the dimensionless densities and viscosities of the two fluids, respectively. We will
assume that all boundaries are walls and impose ~u ¼ 0 there.

Approximations of the curvature and the gradient of U have to be calculated. Since Unþ1 is piecewise linear,
the gradient of Unþ1 is discontinues and piecewise constant. In order to be able to calculate the curvature, we
define ðrUÞnþ1 as the projection of the gradient of Unþ1 onto a continues, piecewise linear space. In other
words, we define ðrUÞnþ1 2 W h such that
Z

X
ðrUÞnþ1 �~v dx ¼

Z
X
rðUnþ1Þ �~v dx 8~v 2 W h: ð20Þ
Note that no boundary conditions are necessary to solve (20). The mean curvature of the level sets of any U is
given by
j ¼ �r � rU
jrUj :
Assuming a contact angle of 90� i.e. n̂ � m̂ ¼ 0 on oX this can be discretized by finding jnþ1 2 V h such that
Z
X

vjnþ1 dx ¼
Z

X
rv � ðrUÞnþ1

jðrUÞnþ1j
dx 8~v 2 V h: ð21Þ
This might however produce spurious oscillations in space in jnþ1 with a frequency of about 1=h. These high
frequent parts can be damped if we instead calculate a regularized curvature ~j by approximating
~j� e2D~j ¼ j ¼ �r � ðrUÞ
jðrUÞj :
Fourier analysis gives
~̂jð~xÞ ¼ 1

1þ e2ðk~xk2Þ
ĵð~xÞ;
where ĵð~xÞ and ~̂jð~xÞ are the Fourier coefficients of j and ~j and ~x is a vector of the frequencies in the x, y and
z directions. By letting e2 ¼ h~̂j � ĵ if k~xk ¼ Oð1Þ and ~̂j � hĵ if k~xk ¼ Oð1=hÞ. An approximation of the reg-
ularized curvature is: Find ~jnþ1 2 V h such that
Z

X
v~jnþ1 dx ¼

Z
X
rv � ðrUÞnþ1

jðrUÞnþ1j
dx� e2

Z
X
rv � r~jnþ1 dx 8~v 2 V h: ð22Þ
Here we use the boundary condition r~jnþ1 � m̂ ¼ 0 on oX.
There are a wide range of different methods available for the discretization of the Navier–Stokes equations.

We use a projection method [12,13] similar to the unconditionally stable method proposed for one fluid incom-
pressible flow by Guermond and Quartapelle [14]. We choose this method since it is well suited for low
Reynolds number calculations (no severe time step restrictions). It also allows us to solve for each variable
separately, and thereby reducing the amount of memory needed in the calculations. For more general prob-
lems, with for instance more complicated boundary conditions, a fully coupled solution strategy is more
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suitable. For a thorough discussion on the advantages and disadvantages of projection methods, we refer to
the recent review paper by Guermond et al. [15].

To begin with consider discretization in time only. The first step is to calculate an intermediate velocity~unþ1
�

that is not divergence free, but satisfies ~unþ1
� ¼ 0 on the boundaries.
1

Dt
ðqnþ1~unþ1

� � qn~unÞ þ r � ðqnþ1~un~unþ1
� Þ ¼ �rpn þ 1

Re
r � ðlðr~unþ1

� þ ðr~unÞTÞÞ þ qnþ1

Fr2
~eg þ

1

We
~F nþ1

sv : ð23Þ
We then define ~unþ1 similarly, but with the pressure term implicitly:
1

Dt
ðqnþ1~unþ1 � qn~unÞ þ r � ðqnþ1~un~unþ1

� Þ ¼ �rpnþ1 þ 1

Re
r � ðlðr~unþ1

� þ ðr~unÞTÞÞ þ qnþ1

Fr2
~eg þ

1

We
~F nþ1

sv :

ð24Þ

We subtract (23) from (24), rearrange the terms and obtain
~unþ1 ¼~unþ1
� þ Dt

qnþ1
rð�pnþ1 þ pnÞ: ð25Þ
We then use r �~unþ1 ¼ 0 and get a Poisson equation for the pressure:
1

Dt
r �~unþ1

� ¼ r � rðp
nþ1 � pnÞ
qnþ1

� �
: ð26Þ
The corrected velocity can now be calculated from (25). Note that ~unþ1 � m̂ ¼~unþ1
� � m̂ ¼ 0 on the boundaries.

Thus it follows from (25) that we have to enforce the unphysical boundary condition rðpnþ1�pnÞ � m̂ ¼ 0 in this
projection method. This can reduce the accuracy of the method as discussed in [15]. For our problems we did
however obtain sufficiently accurate results.

So far, we have only discussed the temporal discretization of the Navier–Stokes equations. In space, we use
linear finite element approximations. Corresponding to (23), we first determine ~unþ1

� 2 W h such that
1

Dt

Z
X
ðqnþ1~unþ1

� � qn~unÞ �~v dx�
Z

X
ð~un � r~vÞ � q~unþ1

� dx
Z

X
ðr �~vÞpn dx� 1

Re

Z
X

lnþ1
X

i

rvi � ðrunþ1
�i þ~un

xiÞ dx

þ
Z

X

~v � qnþ1

Fr2
~eg þ

1

We
~F nþ1

sv

� �
dx 8~v 2 W h; ð27Þ
with
~F nþ1
sv ¼ ~jnþ1ðrUÞnþ1

:

Then, corresponding to (26), find pnþ1 2 V h such that
� 1

Dt

Z
X

qr �~unþ1
� dx ¼

Z
X

rq � rðpnþ1 � pnÞ
qnþ1

dx 8q 2 V h: ð28Þ
Note that all functions in W h vanish on oX, while there is no such restriction on V h. As discussed earlier, we
must enforce rðpnþ1 � pnÞ � m̂ ¼ 0. Finally, as in (25), ~unþ1 can be solved for. Find ~unþ1 2 W h such that
Z

X

~v �~u
nþ1 �~unþ1

�
Dt

dx�
Z

X

~v � rðp
nþ1 � pnÞ
qnþ1

dx 8~v 2 W h: ð29Þ
We summarize the algorithm for solving both the Navier–Stokes as well as the motion of the interface. In each
time step the following steps are executed.


 Calculate Unþ1
� using (12).


 Calculate n̂� from Unþ1
� using (13).


 Using Unþ1
� as initial data, solve (14) to steady state. This gives Unþ1.


 Calculate ðrUÞnþ1 from Unþ1 using (20).

 Calculate jnþ1 using (22).
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 Calculate ~unþ1 from (27).

 Calculate pnþ1 from (28).

 Finally, calculate ~unþ1 using (29).

The implementations were done using the finite element tool Femlego [16,17].

4. Conservation

We can consider conservation of the method from two perspectives. These are the conservation of mass and
the conservation of the area (volume for problems in three dimension) bounded by the 0.5 contour of U.

Exact mass conservation of the discrete solution for both two and three dimensional problems is easily ver-
ified by considering one time step of the method. The finite element discretizations given by (12) and (14) holds
for any v 2 V h. In particular, they hold for v � 1. The gradient of v � 1 is zero. Eq. (12) therefore gives
Z

X

Unþ1
� � Un

Dt
dx ¼ 0;
or
 Z
X

Unþ1
� dx ¼

Z
X

Un dx:
Equivalently, by letting v � 1 in (14) we obtain
Z
X

Ukþ1
c dx ¼

Z
X

Uk
c dx:
Putting this together it is clear that
Z
X

Unþ1 dx ¼
Z

X
Umþ1

c dx ¼
Z

X
Um

c dx ¼ � � � ¼
Z

X
U0

c dx ¼
Z

X
Unþ1
� dx ¼

Z
X

Un dx;
or simply
Z
X

Unþ1 dx ¼
Z

X
Un dx:
Since the density is approximated by qn ¼ q1 þ ðq2 � q1Þ/n, it follows that
R

X qn dx ¼
R

X qnþ1 dx. Mass will
thus be conserved exactly by the method. In a diffuse interface approach we can interpret U as the concentra-
tion of fluid one. The total mass of fluid one, m1, will then also be conserved exactly, since
mnþ1

1 ¼
R

X q1U
nþ1 dx ¼

R
X q1U

n dx ¼ mn
1. Since the total mass of both fluids is conserved, the mass of the sec-

ond fluid will also remain constant.
Next we study the conservation of the area bounded the 0.5 contour of Un, which we denote by AUn¼0:5. Here

we will only study the conservation of area for a two dimensional problem, although our derivation easily can
be extended to volume conservation of three dimensional problems.

Assume that the reinitialization step is solved to steady state in each time step. Then Un is a steady state
solution of (14) with initial condition Un

�:
Z
X
ðUn � ðUnÞ2Þrv � n̂n

� � erv � ððrUn � n̂n
�Þn̂n
�Þ dx ¼ 0 8v 2 V h: ð30Þ
Here, n̂n
� �

rUn
�

jrUn
�j
. Thus Un is an approximation to a function U solving
U� U2 ¼¼ eðrU � n̂Þ; ð31Þ

where n̂ ¼ n̂n

� is independent of U. With U and Un we associate subspaces of X according to the following
definition.

Definition 1. Define X1; X2 and C as the subspaces of X where U < 0:5; U > 0:5 and U ¼ 0:5, respectively.
Let Xn

1; Xn
2 and Cn be the subspaces of X where Un < 0:5; Un > 0:5 and Un ¼ 0:5. Define eUn by
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eUnðxÞ ¼
1 if x 2 Xn

2;

0 otherwise:

�

and correspondingly for eU:
eUðxÞ ¼ 1 if x 2 X2;

0 otherwise:

�

It follows directly from the definition of eUn that
AUn¼0:5 ¼
Z

X

eUnðxÞ dx:
To investigate the conservation of AUn¼0:5 we study the difference between AUn¼0:5 and the exactly conserved
quantity

R
X Un dx:
Z

X
Un dx� AUn¼0:5

���� ���� ¼ Z
X

Un dx�
Z

X

eUnðxÞ dx

���� ����
¼
Z

X
Un dx�

Z
X

eUnðxÞ dx�
Z

X
U dx�

Z
X

eU dx
� �

þ
Z

X
U dx�

Z
X

eU dx
� ����� ����

6 kU� UnkL1ðXÞ þ keU � eUnkL1ðXÞ þ
Z

X
U� eU� �

dx

���� ����: ð32Þ
As we estimate the size of the first two terms on the right-hand side we have to keep in mind that e � Dx. This
implies that the resolution of the transition layer will not increase as the grid is refined. The thickness of the
transition layer will however be proportional to e. We can thus estimate the size of the first two terms to be
CDx. The size of the constant C will depend on the order of the method and the number of gridpoints in the
transition layer. The last term is only related to an exact solution of (31) and will not depend on the numerical
method used. Bounds on the last term can be found, given suitable restrictions on the vector field n̂.

Definition 2. For every point x0 on C, let X ðx0; sÞ denote a path in X such that
X ðx0; 0Þ ¼ x0;
oX
os
¼ n̂:
Furthermore, let X0 be the subspace of X where no unique x0 and s exist such that x ¼ X ðx0; sÞ.

Examples of paths are given in Fig. 1. Typically, we cannot assume X0 ¼ f0g. Often, as in the example in
Fig. 1, we can however assume

R
X0

dX ¼ 0.

Lemma 1. Assume a function U of which the 0.5 level set forms a closed smooth curve C. Let LC be the length of C
and assume that the magnitude of the curvature is bounded by j1. Also assume that U fulfills
U� U2 ¼ eðrU � n̂Þ

in X n X0 where

R
X0

U dX ¼ 0.
Fig. 1. Example of paths: (a) The path X ðx0; sÞ for one x0 2 C, (b) several paths corresponding to different x0.
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Then it holds that
Z
X
ðU� eUÞ dx

���� ���� 6 LCðe lnð2Þ þ j1e2Þ: ð33Þ
If the paths X ðx0; sÞ are straight non intersecting lines perpendicular to C for all jsj < b, then
Z
X
ðU� eUÞ dx

���� ���� 6 LCðj1e2 þ e lnð1þ e�b=eÞÞ: ð34Þ
Note that the second term of the bound given by (34) will decrease exponentially fast to zero as e! 0.

The proof is straight forward, and is found in Appendix A.
We can conclude that
AUn¼0:5 ¼ AU0¼0:5 þ 2d;

jdj 6 kU� UnkL1ðXÞ þ keU � eUnkL1ðXÞ þ ðe ln 2þ j1e2Þ
for general paths X, and for straight paths for jsj < b
jdj 6 kU� UnkL1ðXÞ þ keU � eUnkL1ðXÞ þ LCðj1e2 þ e lnð1þ e�b=eÞÞ:
As will be seen in the section on numerical results, we experimentally obtained variations bounded by LCj1e2.
This suggests that the we can assume the paths to be straight and perpendicular to C sufficiently close to the
interface. Paths perpendicular to C corresponds to that n̂ ¼ rU

jrUj on C.

Note that d does not explicitly depend on t or Dt. This implies that the difference in area will not increase or
decrease as t becomes larger unless the length or the maximum curvature of the interface is increasing or
decreasing in time.
5. Adaptive mesh control

There are two reasons to refine the grid close to the interface. First of all, the position of the interface will be
more accurately represented. Secondly, the smearing of the density, viscosity and surface tension across the
interface is unphysical. It is therefore desirable to keep the thickness of the transition layer as small as possible.
A restriction on how small e can be was discussed in Section 2.4. If e, and hence the thickness of the interface,
is too small compared to the grid size there will be oscillations in U. In order to have a sharp transition, we
need to have a refined grid close to the interface. We are therefore interested in an adaptive algorithm. We
design our algorithm such that we can control the mesh with respect to the following parameters:


 d: thickness of the interface (proportional to e).

 m: number of elements across the interface.

 IndðxÞ: function indicating how to refine.

Here we will use the indicator function
IndðxÞ ¼ 1

e
UðxÞð1� UðxÞÞ;
and note that over an interface this is approximately rU � n̂ ¼ jrUj. Clearly, the indicator function is expo-
nentially small away from the interface and has its maximum when U ¼ 0:5. The grid is then defined such thatR

Ki
IndðxÞ dx � Tol for each element Ki. Tol can be chosen such that there will be m grid points across an inter-

face of thickness d. First we have to define the thickness of the interface. Assume Uð~x1Þ ¼ 0:05 and
Uðx̂2Þ ¼ 0:95 and that x̂1 ¼ X ðx0; s1Þ and x̂1 ¼ X ðx0; s2Þ. We define the thickness of the interface by
d ¼ jx̂2 � x̂1j. Using that the profile is
UðX ðx0; sÞÞ ¼
1

1þ es=e
; ð35Þ
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and assuming that the paths X ðx0; sÞ are straight for s1 6 s 6 s2 one easily sees that d ¼ e lnð0:952=0:052Þ � 6e.
The grid size is given by aðxÞ ¼ ðe � TolÞ=ðUð1� UÞÞ, where aðxÞ is the area of the elements. If we assume the
elements to be isosceles right triangles (triangle with a right angle between two equal sides), then the length of
the hypotenuse is hypðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
4aðxÞ

p
. Introducing a coordinate system along the interface m, the minimum

number of elements across the interface, can be estimated. To do this we again use that the profile of the inter-
face is given by (35), obtaining
m ¼
Z 3e

�3e
1=hypðxÞ dx ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
e � Tol
p

Z 3e

�3e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uð1� UÞ

p
dx

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
e � Tol
p

Z 3e

�3e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�x=e

ð1þ e�x=eÞ2

s
dx

ffiffi
e
p

2
ffiffiffiffiffiffiffi
Tol
p

Z e3e

e�3e

1ffiffi
t
p
ð1þ tÞ

dt

¼
ffiffi
e
pffiffiffiffiffiffiffi
Tol
p ðarctanð

ffiffiffiffi
e3
p
ÞÞ � arctanð

ffiffiffiffiffiffiffi
e�3
p

Þ ¼ const

ffiffi
e
pffiffiffiffiffiffiffi
Tol
p � 1:1

ffiffi
e
pffiffiffiffiffiffiffi
Tol
p : ð36Þ
Thus Tol ¼ 1:3e
m2 will yield approximately m grid points over the interface. Correspondingly for three dimen-

sional meshes, one easily sees that Tol � e2

m3. In order not to make the grid too coarse away from the interface,
we make sure h 6 hmax for some appropriate hmax. We now have expressions on how e and Tol should be cho-
sen in terms of m and d:
e ¼ d

lnð0:952=0:052Þ
� d=6; ð37Þ

Tol ¼ 0:2d
m2

: ð38Þ
As was shown in Section 2.4, we will get oscillations in U when U � 0 or U � 1 if e is too small compared to
the grid size h. Because of this we used a larger e in the coarser parts of the grid such that e P Ch was fulfilled
everywhere.

Since U will depend on time, the mesh will have to be adjusted in time. How often re-meshing is needed
depends on how quickly the interface moves.

6. Numerical results

The performance and convergence of the method was tested on different problems where the motion was
driven by surface tension. The gravitational forces are supposed to be small in our future applications. The
gravity was therefore set to zero in all the computations presented here.

6.1. Oscillating droplet for small Reynolds number in 2D and 3D

In the first test problem the parameters in the Navier–Stokes were set such that the main forces were
expected to be surface tension and viscous forces. The dimensionless parameters were set to
Re ¼ 1; We ¼ 1; q1 ¼ 10; q2 ¼ 1; l1 ¼ 10 and l2 ¼ 1. The initial shape of the interface was constructed by
a 1 � 0:3 rectangle and two half circles of radius 0.15 in 2D. For calculations in 3D a cylinder of radius
0.15 and length 1 with two half spheres of radius 0.15 at the ends was used.

6.1.1. Estimation of order of accuracy with respect to grid size

First 2D computations were performed to check the convergence of the method. The computational
domain was 2 � 2 and was discretized using three different uniform meshes of 80 � 80, 116 � 116 and
160 � 160 nodes. The position of the 0.5 contour on the different grids for some time steps is shown in
Fig. 2. On each grid we used: e ¼ Dx �

ffiffiffi
2
p

. Dt was proportional to Dx. The order of accuracy was calculated
with respect to the average distance between the 0.5 contours of the exact solution U and a numerical solu-
tion Un, i.e.
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E ¼
Z

X

jeUn � eUj
LC

dx � Chp; ð39Þ
where LC is the length of the interface and eUn and eU go sharply from zero to one at the 0.5 contour of Un and
U as in Definition 1. Since the exact solution of the problem is not known, (39) cannot be used directly to cal-
culate the order of accuracy p. By comparing solutions obtained using three different grid sizes,
h1; h2 ¼ kh1; h3 ¼ k2h1, the order of accuracy can be estimated from
p �
ln

R
XjeUh2

� eUh3
j dx�

R
X jeUh1

� eUh2
j dx

� �
ln k

:

The variation of the area bounded by the 0.5 contour of U and the estimated order of accuracy at different
times are given in Figs. 3a and b. The area fluctuations are less than 1% on all grids. They are all also smaller
than maxtðk1LCe2Þ, indicating that the bound (34) is more adequate than (33). The order of accuracy is about
two. This was the best we could hope for since we were using linear finite element discretizations. The conver-
gence obtained here was much better than for the fluid flow tests in [7]. The reason of this improvement is the
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modification in the reinitialization step. In time, first order discretizations were used. Since our results show
second order of accuracy, the error due to the temporal discretization appears to be negligible compared to the
spatial errors. This justifies the use of only first order accurate discretizations in time.

6.1.2. Estimation of error with respect to e
On the finest grid with 160 � 160 nodes, runs were also performed using different e, see Fig. 4. This was done

to investigate how the size of e effects the solution. We are interested in the behavior of the error given by
Ee ¼
Z

X

jeU0 � eUej
LC

dx ð40Þ
where the subscript of U denotes the size of e. Several factors contribute to this error. First of all the smearing of
density, viscosity and surface tension will result in an error. Secondly, the reinitialization will introduce some
additional error. Because of the complexity it is hard to analyze the total effect of all these errors. We can how-
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Fig. 4. 0.5 contour of U using different e (0.018,0.025,0.036) on 160 � 160 grid. (a) t = 0, (b) t = 5, (c) t = 10.
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ever easily numerically estimate an order of accuracy p with respect to this error if we assume Ee � Cep. Area
conservation and estimated order of accuracy with respect to e are given in Figs. 5a and b. Again, the variations
in area suggest the bound (34) to be accurate. For this specific case it seems as if the error with respect to the
average distance between the actual interface and the exact interface is OðepÞ with p P 2.

6.1.3. Results using adaptive grids in two and three dimensions

Computations were also done using adaptive grids with e set to 0.018. Since the grid was updated during the
calculation the number of grid points varied, but was approximately 8000. An example of the grid is shown in
Fig. 6. In Fig. 7 a comparison between results obtained using the adaptive grid and the uniform grids are given.
Results on this adaptive grids compared well with the calculations performed using 160 � 160 ¼ 25; 600, i.e.
using about three times as many nodes. The total computing time was thus reduced to 30%. The gain obtained
by using adaptive grids can be expected to be larger for three dimensional computations.

Using the same parameters in the Navier–Stokes equations, three dimensional calculations were also per-
formed. The initial shape of the interface was produced by a cylinder and two half spheres. Adaptive grids
were used with e ¼ 0:018 and about 50,000 nodes. The volume bounded by the 0.5 isosurface varied with
about one percent.

6.2. Small amplitude oscillations

To validate our method we have also simulated small amplitude oscillations. A droplet with density q1 and
viscosity l1 is surrounded by an infinite media with density q2 and viscosity l2. In cylindrical coordinates ðr; hÞ
the interface line r ¼ rðhÞ in the initial configuration is given by
Fig. 6. Example of adaptive grid.



—0.5 0 0.5
—0.5

0

0.5

x

y
80*80
113*113
160*160
Adaptive, ~8000

—0.55 —0.5 0.45 0.4

—0.05

0

0.05

0.1

x

y

80*80
113*113
160*160
Adaptive, ~8000

1 2 3 4 5 6 7
0.367

0.368

0.369

0.37

0.371

0.372

t

ar
ea

Adaptive grid, ca 8000 nodes
160*160

Fig. 7. Comparison of results using adaptive and uniform grids: (a) t = 5, (b) t = 5, (c) area conservation.

Table
Oscilla

q2=q1

1
0.1
0.01
0.001
0.0001
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r ¼ R0ð1� n=4þ nP 2ðcos hÞÞ;

where P2 is the Legendre polynomial of order 2, and n� 1. There are theoretical results on this problem. In
[18,19] some analytical expressions for infinitesimal amplitude oscillations of an incompressible, inviscid drop-
let are derived. In particular, the angular frequency, xl, is given by
x2
l ¼

ðl3 � lÞr
ðq1 þ q2ÞR3

0

;

where l is the order of the Legendre polynomial. We set R0 ¼ 1; n ¼ 0:01; a ¼ 0:5; l1 ¼ l2 ¼ 5�
10�3; Re ¼ 1; We ¼ 2 and q1 ¼ 1, and performed tests to determine the oscillating period T. Computations
were done for different density ratios by changing the density q2. We used homogeneous Neumann boundary
conditions for the velocity. In Table 1 the analytical oscillation period T ¼ 2p=x2 and the results from our
computations for the oscillation period and the relative error are shown. We have considered a fixed mesh
where a quarter of the domain, a square with side equal to 2 is covered by 64 � 64 elements (see Fig. 8).
1
tion period T and relative error for different density ratios q2=q1

Analytical Dt ¼ 0:0025 Dt ¼ 0:001

T T Error % T Error %

5.130 5.385 4.97 5.385 4.97
3.805 3.976 4.51 3.975 4.48
3.646 3.737 2.50 3.736 2.48
3.629 3.685 1.54 3.684 1.52
3.628 3.678 1.38 3.677 1.36



Fig. 8. Results from three dimensional calculations of viscous droplet (Re = l): (a) t = 0, (b) t = 2, (c) t = 4, (d) t = 6, (e) t = 8, (f) t = 10.

Table 2
Oscillation period T and relative error for different mesh resolutions

Mesh Analytical Dt ¼ 0:0025

T T Error %

64� 64 3.646 3.737 2.50
128� 128 3.646 3.707 1.68
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We then keep the density ratio, q2=q1 ¼ 0:01, and Dt ¼ 0:0025 constant and in Table 2 we show how the
oscillation period changes as a function of different mesh resolutions. In Fig. 9, we have plotted the position
of the interface at h ¼ 0 for the two different mesh resolutions. The period was determined by finding the first
maximum of the curve.

In all the computations we have set � ¼
ffiffiffi
2
p

Dx and �2 ¼ 0:001.
In [20] computations for the same problem, using a front tracking scheme, are presented. For small values

of q2=q1 our method performs better than their but for q2=q1 � 1 our method gives slightly poorer results. One
should note that this problem is very well suited for a front tracking scheme, since the interphase undergoes
only infinitesimal distortion. It is therefore not surprising that our method does not give as accurate results in
all of the cases.
6.3. Oscillating liquid Cobalt droplet in air

Cemented carbides are extremely hard materials used for example in tools for steel cutting. The most com-
mon cemented carbide consist of Tungsten Carbide (WC) and Cobalt and is constructed in the following way.
A powder of Tungsten Carbide and Cobalt is mixed. The mixture is heated such that the Cobalt becomes
liquid. WC has an extremely high melting point and remains solid during the sintering. The liquid Cobalt glues
the Tungsten Carbide grains together and densifies the material. One believes that the driving force during this
process is surface tension. A brief description of the liquid phase sintering as well as properties of liquid Cobalt
can be found in [21].
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In our third simulation we have set density, viscosity and surface tension to correspond to a droplet of
liquid Cobalt in air. The length scale is proportional to the size of the powder grains. The dimensionless
parameters become Re ¼ 1000; We ¼ 1:2; q1 ¼ 0:0001; q2 ¼ 1; l1 ¼ 0:04 and l2 ¼ 1. The shape of the initial
droplet is a 0:6 � 0:5 rectangle with two half circles with radius 0.25 at the end. Calculations were performed on
three different grids to check the convergence. The position of the interface on the different grids are shown in
Fig. 10. The velocity field obtained on the finest grid are shown in Fig. 11.

The order of accuracy with respect to the average distance between the exact interface and the numerically
obtained interface was calculated at t ¼ 0:1; 0:2; . . . ; 1. The result is shown in Fig. 12a. The area of the 0.5 con-
tour was also calculated at the same time points and is shown in Fig. 12b. We obtain good area conservation.
From Fig. 10 it is clear that the shape of the droplet at t ¼ 0 and t ¼ 0:8 are very similar. Because of this we
can expect the area bounded by the interface at t ¼ 0 and t ¼ 0:8 to be very similar. This is verified by our
calculations as can be seen in Fig. 12b.

To make adaptive runs for this test case did not turn out to be useful. Because of the high Reynolds number
the velocity field is varying rapidly in space. This means that we cannot have a very coarse grid away from the
interface, since we need to resolve gradients in velocity properly. In an adaptive mesh control suitable for this
problem, the criterion for refining should also depend on gradients of ~u.

A three dimensional droplet of liquid Cobalt was also studied. In the three dimensional case velocities vary
even more rapidly. Computations could therefore not be done using our simple adaptive approach. Instead
we used a uniform mesh with 40 � 40 � 40 ¼ 64; 000 nodes. Here e ¼ 0:028 was used. Because of the symmetry
of the problem the size of the computational domain of 2 � 2 � 2 could be reduced to 1 � 1 � 1. As can be seen in
Fig. 13 the motion of the interface is significantly different compared to the case with lower Reynolds number.
The velocity field at a few different times is given in Fig. 14. At t = 0.6 steep gradients of the velocity across
the interface can be observed. Eventually the grid is not fine enough to resolve the variations in the velocity
field.

7. Conclusions

In this paper, we have continued to develop the conservative level set method introduced in [7]. An impor-
tant improvement is the modification of the reinitialization step. The numerical results in this paper show
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Fig. 10. Convergence study of numerical calculations of a two dimensional liquid Cobalt droplet in air. Results using three different grids,
each with e ¼

ffiffiffi
2
p

Dx, are given. (a) t = 0, (b) t = 0.1, (c) t = 0.2, (d) t = 0.3, (e) t = 0.4, (f) t = 0.5, (g) t = 0.6, (h) t = 0.7, (i) t = 0.8,
(j) t = 0.9, (k) t = 1.
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much better convergence compared to the rising bubble in the previous paper. We are convinced that the rea-
son for this is the modification of the reinitialization.

We have also given a theoretical analysis on how the area bounded by the appropriate level set can be
expected to be conserved. The theory agrees well with results from our numerical computations.
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An adaptive finite element discretization of the method has been proposed and implemented in two and
three dimensions. Several numerical experiments have been done to investigate the performance of the
method. The results from the calculations showed good conservation and convergence, both with respect to
the grid size and e. The adaptive procedure presented here was only based on the distance to the interface.
This turned out to work well for problems with a small Reynolds number. In the numerical experiments of
the liquid Cobalt droplet the Reynolds number was higher. Because of high gradients in the velocity the cri-
terion how to refine the grid was too crude. It should however be straightforward to take variations in the
velocity into account in the adaptive process.



Fig. 13. Results obtained by three dimensional calculation for liquid Cobalt droplet in air: (a) t = 0, (b) t = 0.1, (c) t = 0.2, (d) t = 0.3,
(e) t = 0.4, (f) t = 0.5, (g) t = 0.6.
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Appendix A

Here we prove Lemma 1.

Proof. Since UðxÞ solves (31) it can easily be verified that UðX ðx0; sÞÞ ¼ gðsÞ ¼ 1
1þes=e holds for any x 2 X n X0.

Define the signed distance function by WðxÞ, i.e.
WðxÞ ¼
min
xI2C
kx� xIk if x 2 X1;

�min
xI2C
kx� xIk if x 2 X2:

8<:

We have that
Z

X
U dx�

Z
X

eU dx
Z

X1

U dxþ
Z

X2

ðU� 1Þ dx ¼ I1 þ I2:
Since s(x) is the distance from x along a path to some point x0 on the interface and W(x) is the shortest dis-
tance to the interface it is clear that sðxÞP WðxÞ for any x 2 X n X0 Since gðsÞ is monotonically decreasing we
have that UðxÞ 6 gðWðxÞÞ. It follows that

http://www2.mech.kth.se/phasetransf/index.htm
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0 < I1 ¼
Z

X1

U dx ¼
Z

X1nX0

U dx 6
Z 1

0

gðlÞLðlÞ dl; ð41Þ
where LðlÞ is the length of the interface corresponding to W ¼ l. Since C is smooth there exists an a such that
WðxÞ is smooth for all x 2 fx : �a 6 WðxÞ 6 ag. For any jlj 6 a
LðlÞ ¼
Z LC

0

1þ jl dt: ð42Þ
Here LC ¼ Lð0Þ denotes the length of C. For any l it holds that
LðlÞ 6 LCð1þ j1jljÞ; ð43Þ

where j1 is the maximum magnitude of the curvature of C. (41) and (43) now gives
0 < I1 6 LC

Z 1

0

gðlÞ dlþ j1

Z 1

0

lgðlÞ dl
� �

:

Similarly, one obtains bounds on I2:
0 > I2 P �LC

Z 1

0

gðlÞ dlþ j1

Z 1

0

lgðlÞ dl
� �

:

Using that
Z 1

a
gðlÞ dl

Z 1

a

1

1þ el=e
dl ¼ e lnð1þ e�a=eÞ
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and
 Z 1

0

lgðlÞ dl
Z 1

0

1

1þ el=e
dl <

Z 1

0

l dl
el=e
¼ e2
we obtain the bound
jI1 þ I2j < LC e ln 2þ j1e2
	 


:

If all the paths X ðx0; SÞ are straight, non-intersecting lines for all jsj < b, then UðxÞ ¼ gðWðxÞÞ and cancellation
of errors gives a stricter bound:
jI1 þ I2j < LCðj1e2 þ e lnð1þ e�b=eÞÞ: � ð44Þ
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